

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/chrome-jironimo/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/chrome-jironimo/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Jironimo

Atlassian JIRA™

 Agile extension for Chrome

Chrome Web Store

jironimo at google play [https://chrome.google.com/webstore/detail/jironimo/bplmocfiilcboedgegkcndbngiicdihl]

Default hotkeys

Windows: Alt + J
Mac: Command + J

Contribution

	Help with translations [https://www.transifex.com/projects/p/chrome-jironimo/]

	Help by coding: fork the repo; do your stuff; create a new Pull Request.

	Join our chat at gitter [https://gitter.im/chrome-jironimo].

Hot to use it?

Please, check the documentation project [http://chrome-jironimo.readthedocs.org/] (docs branch)
I have no time for it right now, PR?

Repository clone

git clone --recursive https://github.com/kkamkou/chrome-jironimo.git
cd chrome-jironimo

Use the source code

	Switch to a release tag (see the releases section)

	Navigate to chrome://extensions

	Expand the developer dropdown menu and click Load Unpacked Extension

	Navigate to local folder /src

Build

npm install && ./node_modules/.bin/jake version='4.0'
example for windows
npm install && C:\...\chrome-jironimo\node_modules\.bin\jake version='4.0'

Docker

[sudo] docker build -t jironimo .
[sudo] docker run -ti --rm -v "${PWD}:/opt/app" jironimo version='4.0'

License

Boost Software License 1.0 (BSL-1.0)

Welcome

Metro UI CSS a set of styles to create a site with an interface similar to Windows 8 Metro UI. This set of styles was developed as a self-contained solution.

Current Version

2.0.23

See details of definition on metroui.org.ua [http://metroui.org.ua]

NuGet

Now you can use NuGet package [https://www.nuget.org/packages/Metro.UI.CSS/].
To install Metro UI CSS 2.0, run the following command in the Package Manager Console:
PM> Install-Package Metro.UI.CSS

Pull requests

Please create pull requests to develop branch. Requests in master branch will be ignored.

Credits

	Metro UI CSS now is a Microsoft BizSpark Startup.

	Normalize.css is a project by Nicolas Gallagher and Jonathan Neal.

	Styles created using the less [http://lesscss.org] preprocessor

Browser Compatibility

IE9+, Chrome, Firefox, Opera, Safari

License

Metro UI CSS has MIT License

Old version

Metro UI CSS 0.95 you can find in a branch metrouicss-0.95 [https://github.com/olton/Metro-UI-CSS/tree/metrouicss-0.95]

Version 2.0.23

Changes:

	fix dialog with form for mobile webkit (issue 424)

	upd nuspec (issue 445)

	fix memory leak (issue 441)

	fix docs for incorrect labels (issue 442)

	fix input control transform email style (issue 444)

Version 2.0.22

Changes:

	add german locale

	add spanish locale

	bug fixed

	bug added

Version 2.0.21

Changes:

	upd responsive (container, grid, typography)

	fix navigation bar > element-menu responsive feature

Version 2.0.20

Changes:

	add responsive (container, grid, typography)

Version 2.0.19

Changes:

	add dark style for dropdown menu

	minor bugs fix

Version 2.0.18

Changes:

	add light style for sidebar

	minor bug fix for docs

Changes:

	remove !important from colors classes

	add new colors bg(fg)-hover-, bg(fg)-active- and bg(fg)-focus-*

	fix METRO_WEEK_START for datepicker

Version 2.0.16

Changes:

	add pause and resume the animations for live tiles

Version 2.0.15

Changes:

	add chinese language to calendar and datepicker (By NoGrief)

Version 2.0.14

Changes:

	fix issue 406 (data-transform)

Version 2.0.13

Changes:

	add global param METRO_WEEK_START (to set calendar week start: 0 - Sunday (default), 1 - Monday)

	fix show Notify when body no have class .metro

Version 2.0.12

Changes:

	upd datepicker for support calendar features

Version 2.0.11

Changes:

	add start from monday for calendar

	add show other days for calendar

Version 2.0.10

Changes:

	add langs to calendar: en, fr, ua, ru

Version 2.0.9

Changes:

	bugs fix

	add locale support to calendar, datepicker and Date.format (to global set METRO_LOCALE = ‘en’ or ‘ru’, or use data-locale attribute)

Version 2.0.8

Changes:

	bugs fix

	add notices

Version 2.0.7

Changes:

	fix color error in treeview

	add minfied js in one file: metro.min.js

Version 2.0.6

Changes:

	upd treeview, add events for collapse and expand node

Version 2.0.5

Changes:

	init scroll bar component (prototype)

	upd treeview

	fix bugs

Version 2.0.4

Changes:

	change dropdown menu default style

	add dropdown menu inverse style

	fix any bugs

Version 2.0.3

Changes:

	fix any bugs

Version 2.0.2

Changes:

	fixed minor bugs

	new component streamer (prototype)

Version 2.0.1

Changes:

	change buttons.less > button:active for remove dead zone tearly text in button

	added new method value to slider

Limitation:

	no responsive module (only prototype)

	no tiles drag feature

Node-minify

A very light minifier NodeJS module.

Support:

	YUI Compressor –version 2.4.8

	Google Closure Compiler –version v20130411

	UglifyJS2

	Sqwish

It allow you to compress JavaScript and CSS files.

I recommend to execute it at boot time for production use.

See server.js in examples/.

Installation

npm install node-minify

Quick Start

var compressor = require('node-minify');

// Using Google Closure with jQuery 2.0
new compressor.minify({
 type: 'gcc',
 language: 'ECMASCRIPT5',
 fileIn: 'public/js/jquery-2.0.0.js',
 fileOut: 'public/js/jquery-2.0.0-gcc.js',
 callback: function(err, min){
 console.log('GCC jquery 2.0');
 console.log(err);
// console.log(min);
 }
});

// Using Google Closure
new compressor.minify({
 type: 'gcc',
 fileIn: 'public/js/base.js',
 fileOut: 'public/js/base-min-gcc.js',
 callback: function(err, min){
 console.log(err);
// console.log(min);
 }
});

// Array
new compressor.minify({
 type: 'gcc',
 fileIn: ['public/js/base.js', 'public/js/base2.js'],
 fileOut: 'public/js/base-onefile-gcc.js',
 callback: function(err, min){
 console.log(err);
// console.log(min);
 }
});

// Only concatenation of files (no compression)
new compressor.minify({
 type: 'no-compress',
 fileIn: ['public/js/base.js', 'public/js/base2.js'],
 fileOut: 'public/js/base-onefile-gcc.js',
 callback: function(err, min){
 console.log(err);
// console.log(min);
 }
});

// Using YUI Compressor for CSS
new compressor.minify({
 type: 'yui-css',
 fileIn: 'public/css/base.css',
 fileOut: 'public/css/base-min-yui.css',
 callback: function(err, min){
 console.log(err);
// console.log(min);
 }
});

// Using YUI Compressor for JS
new compressor.minify({
 type: 'yui-js',
 fileIn: 'public/js/base.js',
 fileOut: 'public/js/base-min-yui.js',
 callback: function(err, min){
 console.log(err);
// console.log(min);
 }
});

// Using UglifyJS for JS
new compressor.minify({
 type: 'uglifyjs',
 fileIn: 'public/js/base.js',
 fileOut: 'public/js/base-onefile-uglify.js',
 callback: function(err, min){
 console.log(err);
// console.log(min);
 }
});

// Using Sqwish for CSS
new compressor.minify({
 type: 'sqwish',
 fileIn: ['public/css/base.css', 'public/css/base2.css'],
 fileOut: 'public/css/base-min-sqwish.css',
 callback: function(err, min){
 console.log('Sqwish');
 console.log(err);
// console.log(min);
 }
});

// Using public folder option
new compressor.minify({
 type: 'yui-js',
 publicFolder: 'public/js/',
 fileIn: 'base.js',
 fileOut: 'public/js/base-min-yui-publicfolder.js',
 callback: function(err, min){
 console.log('YUI JS with publicFolder option');
 console.log(err);
// console.log(min);
 }
});

new compressor.minify({
 type: 'yui-js',
 publicFolder: 'public/js/',
 fileIn: ['base.js', 'base2.js'],
 fileOut: 'public/js/base-min-yui-publicfolder-array.js',
 callback: function(err, min){
 console.log('YUI JS with publicFolder option and array');
 console.log(err);
// console.log(min);
 }
});

Concatenate Files

In order to concatenate files, simply pass in an array with the file paths to fileIn.

fileIn: ['public/js/base.js', 'public/js/base2.js', ...]

Max Buffer Size

In some cases you might need a bigger max buffer size (for example when minifying really large files).
By default the buffer is 1000 * 1024 which should be enough. If you however need more buffer, you can simply pass in the desired buffer size as an argument to compressor.minify like so:

new compressor.minify({
 type: 'uglifyjs',
 fileIn: './public/css/base.css',
 fileOut: './public/css/base-min-uglifyjs.css',
 buffer: 1000 * 1024,
 callback: function(err){
 console.log(err);
 }
});

Temp Path

You can define a temporary folder where temporary files will be generated :

new compressor.minify({
 type: 'yui-js',
 fileIn: 'public/js/base.js',
 fileOut: 'public/js/base-min-yui.js',
 tempPath: '/tmp',
 callback: function(err){
 console.log(err);
 }
});

YUI Compressor

Yahoo Compressor can compress both JavaScript and CSS files.

http://developer.yahoo.com/yui/compressor/

Google Closure Compiler

Google Closure Compiler can compress only JavaScript files.

It will throw an error if you try with CSS files.

http://code.google.com/closure/compiler

UglifyJS

UglifyJS can compress only JavaScript files.

It will throw an error if you try with CSS files.

https://github.com/mishoo/UglifyJS

Sqwish

Sqwish can compress only CSS files.

https://github.com/ded/sqwish

Warning

It assumes you have Java installed on your environment for both GCC and YUI Compressor. To check, run:

java -version

Windows support

Since v0.5.0, a windows support is available for the no-compress option and uglify-js (thanks to pieces029 and benpusherhq)

MIT License

Copyright (c) 2013 Rodolphe Stoclin

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

UglifyJS 2

[image: Build Status] [https://travis-ci.org/mishoo/UglifyJS2]

UglifyJS is a JavaScript parser, minifier, compressor or beautifier toolkit.

This page documents the command line utility. For
API and internals documentation see my website [http://lisperator.net/uglifyjs/].
There’s also an
in-browser online demo [http://lisperator.net/uglifyjs/#demo] (for Firefox,
Chrome and probably Safari).

Install

First make sure you have installed the latest version of node.js [http://nodejs.org/]
(You may need to restart your computer after this step).

From NPM for use as a command line app:

npm install uglify-js -g

From NPM for programmatic use:

npm install uglify-js

From Git:

git clone git://github.com/mishoo/UglifyJS2.git
cd UglifyJS2
npm link .

Usage

uglifyjs [input files] [options]

UglifyJS2 can take multiple input files. It’s recommended that you pass the
input files first, then pass the options. UglifyJS will parse input files
in sequence and apply any compression options. The files are parsed in the
same global scope, that is, a reference from a file to some
variable/function declared in another file will be matched properly.

If you want to read from STDIN instead, pass a single dash instead of input
files.

The available options are:

 --source-map Specify an output file where to generate source map.
 [string]
 --source-map-root The path to the original source to be included in the
 source map. [string]
 --source-map-url The path to the source map to be added in //#
 sourceMappingURL. Defaults to the value passed with
 --source-map. [string]
 --in-source-map Input source map, useful if you're compressing JS that was
 generated from some other original code.
 --screw-ie8 Pass this flag if you don't care about full compliance
 with Internet Explorer 6-8 quirks (by default UglifyJS
 will try to be IE-proof). [boolean]
 --expr Parse a single expression, rather than a program (for
 parsing JSON) [boolean]
 -p, --prefix Skip prefix for original filenames that appear in source
 maps. For example -p 3 will drop 3 directories from file
 names and ensure they are relative paths. You can also
 specify -p relative, which will make UglifyJS figure out
 itself the relative paths between original sources, the
 source map and the output file. [string]
 -o, --output Output file (default STDOUT).
 -b, --beautify Beautify output/specify output options. [string]
 -m, --mangle Mangle names/pass mangler options. [string]
 -r, --reserved Reserved names to exclude from mangling.
 -c, --compress Enable compressor/pass compressor options. Pass options
 like -c hoist_vars=false,if_return=false. Use -c with no
 argument to use the default compression options. [string]
 -d, --define Global definitions [string]
 -e, --enclose Embed everything in a big function, with a configurable
 parameter/argument list. [string]
 --comments Preserve copyright comments in the output. By default this
 works like Google Closure, keeping JSDoc-style comments
 that contain "@license" or "@preserve". You can optionally
 pass one of the following arguments to this flag:
 - "all" to keep all comments
 - a valid JS regexp (needs to start with a slash) to keep
 only comments that match.
 Note that currently not *all* comments can be kept when
 compression is on, because of dead code removal or
 cascading statements into sequences. [string]
 --preamble Preamble to prepend to the output. You can use this to
 insert a comment, for example for licensing information.
 This will not be parsed, but the source map will adjust
 for its presence.
 --stats Display operations run time on STDERR. [boolean]
 --acorn Use Acorn for parsing. [boolean]
 --spidermonkey Assume input files are SpiderMonkey AST format (as JSON).
 [boolean]
 --self Build itself (UglifyJS2) as a library (implies
 --wrap=UglifyJS --export-all) [boolean]
 --wrap Embed everything in a big function, making the “exports”
 and “global” variables available. You need to pass an
 argument to this option to specify the name that your
 module will take when included in, say, a browser.
 [string]
 --export-all Only used when --wrap, this tells UglifyJS to add code to
 automatically export all globals. [boolean]
 --lint Display some scope warnings [boolean]
 -v, --verbose Verbose [boolean]
 -V, --version Print version number and exit. [boolean]

Specify --output (-o) to declare the output file. Otherwise the output
goes to STDOUT.

Source map options

UglifyJS2 can generate a source map file, which is highly useful for
debugging your compressed JavaScript. To get a source map, pass
--source-map output.js.map (full path to the file where you want the
source map dumped).

Additionally you might need --source-map-root to pass the URL where the
original files can be found. In case you are passing full paths to input
files to UglifyJS, you can use --prefix (-p) to specify the number of
directories to drop from the path prefix when declaring files in the source
map.

For example:

uglifyjs /home/doe/work/foo/src/js/file1.js \
 /home/doe/work/foo/src/js/file2.js \
 -o foo.min.js \
 --source-map foo.min.js.map \
 --source-map-root http://foo.com/src \
 -p 5 -c -m

The above will compress and mangle file1.js and file2.js, will drop the
output in foo.min.js and the source map in foo.min.js.map. The source
mapping will refer to http://foo.com/src/js/file1.js and
http://foo.com/src/js/file2.js (in fact it will list http://foo.com/src
as the source map root, and the original files as js/file1.js and
js/file2.js).

Composed source map

When you’re compressing JS code that was output by a compiler such as
CoffeeScript, mapping to the JS code won’t be too helpful. Instead, you’d
like to map back to the original code (i.e. CoffeeScript). UglifyJS has an
option to take an input source map. Assuming you have a mapping from
CoffeeScript → compiled JS, UglifyJS can generate a map from CoffeeScript →
compressed JS by mapping every token in the compiled JS to its original
location.

To use this feature you need to pass --in-source-map /path/to/input/source.map. Normally the input source map should also point
to the file containing the generated JS, so if that’s correct you can omit
input files from the command line.

Mangler options

To enable the mangler you need to pass --mangle (-m). The following
(comma-separated) options are supported:

	sort — to assign shorter names to most frequently used variables. This
saves a few hundred bytes on jQuery before gzip, but the output is
bigger after gzip (and seems to happen for other libraries I tried it
on) therefore it’s not enabled by default.

	toplevel — mangle names declared in the toplevel scope (disabled by
default).

	eval — mangle names visible in scopes where eval or when are used
(disabled by default).

When mangling is enabled but you want to prevent certain names from being
mangled, you can declare those names with --reserved (-r) — pass a
comma-separated list of names. For example:

uglifyjs ... -m -r '$,require,exports'

to prevent the require, exports and $ names from being changed.

Compressor options

You need to pass --compress (-c) to enable the compressor. Optionally
you can pass a comma-separated list of options. Options are in the form
foo=bar, or just foo (the latter implies a boolean option that you want
to set true; it’s effectively a shortcut for foo=true).

	sequences – join consecutive simple statements using the comma operator

	properties – rewrite property access using the dot notation, for
example foo["bar"] → foo.bar

	dead_code – remove unreachable code

	drop_debugger – remove debugger; statements

	unsafe (default: false) – apply “unsafe” transformations (discussion below)

	conditionals – apply optimizations for if-s and conditional
expressions

	comparisons – apply certain optimizations to binary nodes, for example:
!(a <= b) → a > b (only when unsafe), attempts to negate binary nodes,
e.g. a = !b && !c && !d && !e → a=!(b||c||d||e) etc.

	evaluate – attempt to evaluate constant expressions

	booleans – various optimizations for boolean context, for example !!a ? b : c → a ? b : c

	loops – optimizations for do, while and for loops when we can
statically determine the condition

	unused – drop unreferenced functions and variables

	hoist_funs – hoist function declarations

	hoist_vars (default: false) – hoist var declarations (this is false
by default because it seems to increase the size of the output in general)

	if_return – optimizations for if/return and if/continue

	join_vars – join consecutive var statements

	cascade – small optimization for sequences, transform x, x into x
and x = something(), x into x = something()

	warnings – display warnings when dropping unreachable code or unused
declarations etc.

	negate_iife – negate “Immediately-Called Function Expressions”
where the return value is discarded, to avoid the parens that the
code generator would insert.

	pure_getters – the default is false. If you pass true for
this, UglifyJS will assume that object property access
(e.g. foo.bar or foo["bar"]) doesn’t have any side effects.

	pure_funcs – default null. You can pass an array of names and
UglifyJS will assume that those functions do not produce side
effects. DANGER: will not check if the name is redefined in scope.
An example case here, for instance var q = Math.floor(a/b). If
variable q is not used elsewhere, UglifyJS will drop it, but will
still keep the Math.floor(a/b), not knowing what it does. You can
pass pure_funcs: ['Math.floor'] to let it know that this
function won’t produce any side effect, in which case the whole
statement would get discarded. The current implementation adds some
overhead (compression will be slower).

The unsafe option

It enables some transformations that might break code logic in certain
contrived cases, but should be fine for most code. You might want to try it
on your own code, it should reduce the minified size. Here’s what happens
when this flag is on:

	new Array(1, 2, 3) or Array(1, 2, 3) → [1, 2, 3]

	new Object() → {}

	String(exp) or exp.toString() → "" + exp

	new Object/RegExp/Function/Error/Array (...) → we discard the new

	typeof foo == "undefined" → foo === void 0

	void 0 → undefined (if there is a variable named “undefined” in
scope; we do it because the variable name will be mangled, typically
reduced to a single character).

Conditional compilation

You can use the --define (-d) switch in order to declare global
variables that UglifyJS will assume to be constants (unless defined in
scope). For example if you pass --define DEBUG=false then, coupled with
dead code removal UglifyJS will discard the following from the output:

if (DEBUG) {
 console.log("debug stuff");
}

UglifyJS will warn about the condition being always false and about dropping
unreachable code; for now there is no option to turn off only this specific
warning, you can pass warnings=false to turn off all warnings.

Another way of doing that is to declare your globals as constants in a
separate file and include it into the build. For example you can have a
build/defines.js file with the following:

const DEBUG = false;
const PRODUCTION = true;
// etc.

and build your code like this:

uglifyjs build/defines.js js/foo.js js/bar.js... -c

UglifyJS will notice the constants and, since they cannot be altered, it
will evaluate references to them to the value itself and drop unreachable
code as usual. The possible downside of this approach is that the build
will contain the const declarations.

[bookmark: codegen-options]

Beautifier options

The code generator tries to output shortest code possible by default. In
case you want beautified output, pass --beautify (-b). Optionally you
can pass additional arguments that control the code output:

	beautify (default true) – whether to actually beautify the output.
Passing -b will set this to true, but you might need to pass -b even
when you want to generate minified code, in order to specify additional
arguments, so you can use -b beautify=false to override it.

	indent-level (default 4)

	indent-start (default 0) – prefix all lines by that many spaces

	quote-keys (default false) – pass true to quote all keys in literal
objects

	space-colon (default true) – insert a space after the colon signs

	ascii-only (default false) – escape Unicode characters in strings and
regexps

	inline-script (default false) – escape the slash in occurrences of
</script in strings

	width (default 80) – only takes effect when beautification is on, this
specifies an (orientative) line width that the beautifier will try to
obey. It refers to the width of the line text (excluding indentation).
It doesn’t work very well currently, but it does make the code generated
by UglifyJS more readable.

	max-line-len (default 32000) – maximum line length (for uglified code)

	bracketize (default false) – always insert brackets in if, for,
do, while or with statements, even if their body is a single
statement.

	semicolons (default true) – separate statements with semicolons. If
you pass false then whenever possible we will use a newline instead of a
semicolon, leading to more readable output of uglified code (size before
gzip could be smaller; size after gzip insignificantly larger).

	preamble (default null) – when passed it must be a string and
it will be prepended to the output literally. The source map will
adjust for this text. Can be used to insert a comment containing
licensing information, for example.

Keeping copyright notices or other comments

You can pass --comments to retain certain comments in the output. By
default it will keep JSDoc-style comments that contain “@preserve”,
“@license” or “@cc_on” (conditional compilation for IE). You can pass
--comments all to keep all the comments, or a valid JavaScript regexp to
keep only comments that match this regexp. For example --comments '/foo|bar/' will keep only comments that contain “foo” or “bar”.

Note, however, that there might be situations where comments are lost. For
example:

function f() {
 /** @preserve Foo Bar */
 function g() {
 // this function is never called
 }
 return something();
}

Even though it has “@preserve”, the comment will be lost because the inner
function g (which is the AST node to which the comment is attached to) is
discarded by the compressor as not referenced.

The safest comments where to place copyright information (or other info that
needs to be kept in the output) are comments attached to toplevel nodes.

Support for the SpiderMonkey AST

UglifyJS2 has its own abstract syntax tree format; for
practical reasons [http://lisperator.net/blog/uglifyjs-why-not-switching-to-spidermonkey-ast/]
we can’t easily change to using the SpiderMonkey AST internally. However,
UglifyJS now has a converter which can import a SpiderMonkey AST.

For example Acorn [https://github.com/marijnh/acorn] is a super-fast parser that produces a
SpiderMonkey AST. It has a small CLI utility that parses one file and dumps
the AST in JSON on the standard output. To use UglifyJS to mangle and
compress that:

acorn file.js | uglifyjs --spidermonkey -m -c

The --spidermonkey option tells UglifyJS that all input files are not
JavaScript, but JS code described in SpiderMonkey AST in JSON. Therefore we
don’t use our own parser in this case, but just transform that AST into our
internal AST.

Use Acorn for parsing

More for fun, I added the --acorn option which will use Acorn to do all
the parsing. If you pass this option, UglifyJS will require("acorn").

Acorn is really fast (e.g. 250ms instead of 380ms on some 650K code), but
converting the SpiderMonkey tree that Acorn produces takes another 150ms so
in total it’s a bit more than just using UglifyJS’s own parser.

API Reference

Assuming installation via NPM, you can load UglifyJS in your application
like this:

var UglifyJS = require("uglify-js");

It exports a lot of names, but I’ll discuss here the basics that are needed
for parsing, mangling and compressing a piece of code. The sequence is (1)
parse, (2) compress, (3) mangle, (4) generate output code.

The simple way

There’s a single toplevel function which combines all the steps. If you
don’t need additional customization, you might want to go with minify.
Example:

var result = UglifyJS.minify("/path/to/file.js");
console.log(result.code); // minified output
// if you need to pass code instead of file name
var result = UglifyJS.minify("var b = function () {};", {fromString: true});

You can also compress multiple files:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"]);
console.log(result.code);

To generate a source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map"
});
console.log(result.code); // minified output
console.log(result.map);

Note that the source map is not saved in a file, it’s just returned in
result.map. The value passed for outSourceMap is only used to set the
file attribute in the source map (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit]).

You can also specify sourceRoot property to be included in source map:

var result = UglifyJS.minify(["file1.js", "file2.js", "file3.js"], {
 outSourceMap: "out.js.map",
 sourceRoot: "http://example.com/src"
});

If you’re compressing compiled JavaScript and have a source map for it, you
can use the inSourceMap argument:

var result = UglifyJS.minify("compiled.js", {
 inSourceMap: "compiled.js.map",
 outSourceMap: "minified.js.map"
});
// same as before, it returns `code` and `map`

The inSourceMap is only used if you also request outSourceMap (it makes
no sense otherwise).

Other options:

	warnings (default false) — pass true to display compressor warnings.

	fromString (default false) — if you pass true then you can pass
JavaScript source code, rather than file names.

	mangle — pass false to skip mangling names.

	output (default null) — pass an object if you wish to specify
additional output options [http://lisperator.net/uglifyjs/codegen]. The defaults are optimized
for best compression.

	compress (default {}) — pass false to skip compressing entirely.
Pass an object to specify custom compressor options [http://lisperator.net/uglifyjs/compress].

We could add more options to UglifyJS.minify — if you need additional
functionality please suggest!

The hard way

Following there’s more detailed API info, in case the minify function is
too simple for your needs.

The parser

var toplevel_ast = UglifyJS.parse(code, options);

options is optional and if present it must be an object. The following
properties are available:

	strict — disable automatic semicolon insertion and support for trailing
comma in arrays and objects

	filename — the name of the file where this code is coming from

	toplevel — a toplevel node (as returned by a previous invocation of
parse)

The last two options are useful when you’d like to minify multiple files and
get a single file as the output and a proper source map. Our CLI tool does
something like this:

var toplevel = null;
files.forEach(function(file){
 var code = fs.readFileSync(file);
 toplevel = UglifyJS.parse(code, {
 filename: file,
 toplevel: toplevel
 });
});

After this, we have in toplevel a big AST containing all our files, with
each token having proper information about where it came from.

Scope information

UglifyJS contains a scope analyzer that you need to call manually before
compressing or mangling. Basically it augments various nodes in the AST
with information about where is a name defined, how many times is a name
referenced, if it is a global or not, if a function is using eval or the
with statement etc. I will discuss this some place else, for now what’s
important to know is that you need to call the following before doing
anything with the tree:

toplevel.figure_out_scope()

Compression

Like this:

var compressor = UglifyJS.Compressor(options);
var compressed_ast = toplevel.transform(compressor);

The options can be missing. Available options are discussed above in
“Compressor options”. Defaults should lead to best compression in most
scripts.

The compressor is destructive, so don’t rely that toplevel remains the
original tree.

Mangling

After compression it is a good idea to call again figure_out_scope (since
the compressor might drop unused variables / unreachable code and this might
change the number of identifiers or their position). Optionally, you can
call a trick that helps after Gzip (counting character frequency in
non-mangleable words). Example:

compressed_ast.figure_out_scope();
compressed_ast.compute_char_frequency();
compressed_ast.mangle_names();

Generating output

AST nodes have a print method that takes an output stream. Essentially,
to generate code you do this:

var stream = UglifyJS.OutputStream(options);
compressed_ast.print(stream);
var code = stream.toString(); // this is your minified code

or, for a shortcut you can do:

var code = compressed_ast.print_to_string(options);

As usual, options is optional. The output stream accepts a lot of otions,
most of them documented above in section “Beautifier options”. The two
which we care about here are source_map and comments.

Keeping comments in the output

In order to keep certain comments in the output you need to pass the
comments option. Pass a RegExp or a function. If you pass a RegExp, only
those comments whose body matches the regexp will be kept. Note that body
means without the initial // or /*. If you pass a function, it will be
called for every comment in the tree and will receive two arguments: the
node that the comment is attached to, and the comment token itself.

The comment token has these properties:

	type: “comment1” for single-line comments or “comment2” for multi-line
comments

	value: the comment body

	pos and endpos: the start/end positions (zero-based indexes) in the
original code where this comment appears

	line and col: the line and column where this comment appears in the
original code

	file — the file name of the original file

	nlb — true if there was a newline before this comment in the original
code, or if this comment contains a newline.

Your function should return true to keep the comment, or a falsy value
otherwise.

Generating a source mapping

You need to pass the source_map argument when calling print. It needs
to be a SourceMap object (which is a thin wrapper on top of the
source-map [https://github.com/mozilla/source-map] library).

Example:

var source_map = UglifyJS.SourceMap(source_map_options);
var stream = UglifyJS.OutputStream({
 ...
 source_map: source_map
});
compressed_ast.print(stream);

var code = stream.toString();
var map = source_map.toString(); // json output for your source map

The source_map_options (optional) can contain the following properties:

	file: the name of the JavaScript output file that this mapping refers to

	root: the sourceRoot property (see the spec [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit])

	orig: the “original source map”, handy when you compress generated JS
and want to map the minified output back to the original code where it
came from. It can be simply a string in JSON, or a JSON object containing
the original source map.

Async.js

Async is a utility module which provides straight-forward, powerful functions
for working with asynchronous JavaScript. Although originally designed for
use with node.js [http://nodejs.org], it can also be used directly in the
browser. Also supports component [https://github.com/component/component].

Async provides around 20 functions that include the usual ‘functional’
suspects (map, reduce, filter, each…) as well as some common patterns
for asynchronous control flow (parallel, series, waterfall…). All these
functions assume you follow the node.js convention of providing a single
callback as the last argument of your async function.

Quick Examples

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

async.series([
 function(){ ... },
 function(){ ... }
]);

There are many more functions available so take a look at the docs below for a
full list. This module aims to be comprehensive, so if you feel anything is
missing please create a GitHub issue for it.

Common Pitfalls

Binding a context to an iterator

This section is really about bind, not about async. If you are wondering how to
make async execute your iterators in a given context, or are confused as to why
a method of another library isn’t working as an iterator, study this example:

// Here is a simple object with an (unnecessarily roundabout) squaring method
var AsyncSquaringLibrary = {
 squareExponent: 2,
 square: function(number, callback){
 var result = Math.pow(number, this.squareExponent);
 setTimeout(function(){
 callback(null, result);
 }, 200);
 }
};

async.map([1, 2, 3], AsyncSquaringLibrary.square, function(err, result){
 // result is [NaN, NaN, NaN]
 // This fails because the `this.squareExponent` expression in the square
 // function is not evaluated in the context of AsyncSquaringLibrary, and is
 // therefore undefined.
});

async.map([1, 2, 3], AsyncSquaringLibrary.square.bind(AsyncSquaringLibrary), function(err, result){
 // result is [1, 4, 9]
 // With the help of bind we can attach a context to the iterator before
 // passing it to async. Now the square function will be executed in its
 // 'home' AsyncSquaringLibrary context and the value of `this.squareExponent`
 // will be as expected.
});

Download

The source is available for download from
GitHub [http://github.com/caolan/async].
Alternatively, you can install using Node Package Manager (npm):

npm install async

Development: async.js [https://github.com/caolan/async/raw/master/lib/async.js] - 29.6kb Uncompressed

In the Browser

So far it’s been tested in IE6, IE7, IE8, FF3.6 and Chrome 5. Usage:

<script type="text/javascript" src="async.js"></script>
<script type="text/javascript">

 async.map(data, asyncProcess, function(err, results){
 alert(results);
 });

</script>

Documentation

Collections

	each

	map

	filter

	reject

	reduce

	detect

	sortBy

	some

	every

	concat

Control Flow

	series

	parallel

	whilst

	doWhilst

	until

	doUntil

	forever

	waterfall

	compose

	applyEach

	queue

	cargo

	auto

	iterator

	apply

	nextTick

	times

	timesSeries

Utils

	memoize

	unmemoize

	log

	dir

	noConflict

Collections

[bookmark: forEach]
[bookmark: each]

each(arr, iterator, callback)

Applies an iterator function to each item in an array, in parallel.
The iterator is called with an item from the list and a callback for when it
has finished. If the iterator passes an error to this callback, the main
callback for the each function is immediately called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order.

Arguments

	arr - An array to iterate over.

	iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

	callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// assuming openFiles is an array of file names and saveFile is a function
// to save the modified contents of that file:

async.each(openFiles, saveFile, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: forEachSeries]
[bookmark: eachSeries]

eachSeries(arr, iterator, callback)

The same as each only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. This means the iterator functions will complete in order.

[bookmark: forEachLimit]
[bookmark: eachLimit]

eachLimit(arr, limit, iterator, callback)

The same as each only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

	arr - An array to iterate over.

	limit - The maximum number of iterators to run at any time.

	iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err) which must be called once it has
completed. If no error has occured, the callback should be run without
arguments or with an explicit null argument.

	callback(err) - A callback which is called after all the iterator functions
have finished, or an error has occurred.

Example

// Assume documents is an array of JSON objects and requestApi is a
// function that interacts with a rate-limited REST api.

async.eachLimit(documents, 20, requestApi, function(err){
 // if any of the saves produced an error, err would equal that error
});

[bookmark: map]

map(arr, iterator, callback)

Produces a new array of values by mapping each value in the given array through
the iterator function. The iterator is called with an item from the array and a
callback for when it has finished processing. The callback takes 2 arguments,
an error and the transformed item from the array. If the iterator passes an
error to this callback, the main callback for the map function is immediately
called with the error.

Note, that since this function applies the iterator to each item in parallel
there is no guarantee that the iterator functions will complete in order, however
the results array will be in the same order as the original array.

Arguments

	arr - An array to iterate over.

	iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

	callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: mapSeries]

mapSeries(arr, iterator, callback)

The same as map only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: mapLimit]

mapLimit(arr, limit, iterator, callback)

The same as map only no more than “limit” iterators will be simultaneously
running at any time.

Note that the items are not processed in batches, so there is no guarantee that
the first “limit” iterator functions will complete before any others are
started.

Arguments

	arr - An array to iterate over.

	limit - The maximum number of iterators to run at any time.

	iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, transformed) which must be called once
it has completed with an error (which can be null) and a transformed item.

	callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array of the
transformed items from the original array.

Example

async.map(['file1','file2','file3'], 1, fs.stat, function(err, results){
 // results is now an array of stats for each file
});

[bookmark: filter]

filter(arr, iterator, callback)

Alias: select

Returns a new array of all the values which pass an async truth test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. This operation is
performed in parallel, but the results array will be in the same order as the
original.

Arguments

	arr - An array to iterate over.

	iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

	callback(results) - A callback which is called after all the iterator
functions have finished.

Example

async.filter(['file1','file2','file3'], fs.exists, function(results){
 // results now equals an array of the existing files
});

[bookmark: filterSeries]

filterSeries(arr, iterator, callback)

alias: selectSeries

The same as filter only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

[bookmark: reject]

reject(arr, iterator, callback)

The opposite of filter. Removes values that pass an async truth test.

[bookmark: rejectSeries]

rejectSeries(arr, iterator, callback)

The same as reject, only the iterator is applied to each item in the array
in series.

[bookmark: reduce]

reduce(arr, memo, iterator, callback)

aliases: inject, foldl

Reduces a list of values into a single value using an async iterator to return
each successive step. Memo is the initial state of the reduction. This
function only operates in series. For performance reasons, it may make sense to
split a call to this function into a parallel map, then use the normal
Array.prototype.reduce on the results. This function is for situations where
each step in the reduction needs to be async, if you can get the data before
reducing it then it’s probably a good idea to do so.

Arguments

	arr - An array to iterate over.

	memo - The initial state of the reduction.

	iterator(memo, item, callback) - A function applied to each item in the
array to produce the next step in the reduction. The iterator is passed a
callback(err, reduction) which accepts an optional error as its first
argument, and the state of the reduction as the second. If an error is
passed to the callback, the reduction is stopped and the main callback is
immediately called with the error.

	callback(err, result) - A callback which is called after all the iterator
functions have finished. Result is the reduced value.

Example

async.reduce([1,2,3], 0, function(memo, item, callback){
 // pointless async:
 process.nextTick(function(){
 callback(null, memo + item)
 });
}, function(err, result){
 // result is now equal to the last value of memo, which is 6
});

[bookmark: reduceRight]

reduceRight(arr, memo, iterator, callback)

Alias: foldr

Same as reduce, only operates on the items in the array in reverse order.

[bookmark: detect]

detect(arr, iterator, callback)

Returns the first value in a list that passes an async truth test. The
iterator is applied in parallel, meaning the first iterator to return true will
fire the detect callback with that result. That means the result might not be
the first item in the original array (in terms of order) that passes the test.

If order within the original array is important then look at detectSeries.

Arguments

	arr - An array to iterate over.

	iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

	callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
the first item in the array that passes the truth test (iterator) or the
value undefined if none passed.

Example

async.detect(['file1','file2','file3'], fs.exists, function(result){
 // result now equals the first file in the list that exists
});

[bookmark: detectSeries]

detectSeries(arr, iterator, callback)

The same as detect, only the iterator is applied to each item in the array
in series. This means the result is always the first in the original array (in
terms of array order) that passes the truth test.

[bookmark: sortBy]

sortBy(arr, iterator, callback)

Sorts a list by the results of running each value through an async iterator.

Arguments

	arr - An array to iterate over.

	iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, sortValue) which must be called once it
has completed with an error (which can be null) and a value to use as the sort
criteria.

	callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is the items from
the original array sorted by the values returned by the iterator calls.

Example

async.sortBy(['file1','file2','file3'], function(file, callback){
 fs.stat(file, function(err, stats){
 callback(err, stats.mtime);
 });
}, function(err, results){
 // results is now the original array of files sorted by
 // modified date
});

[bookmark: some]

some(arr, iterator, callback)

Alias: any

Returns true if at least one element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists. Once any iterator
call returns true, the main callback is immediately called.

Arguments

	arr - An array to iterate over.

	iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

	callback(result) - A callback which is called as soon as any iterator returns
true, or after all the iterator functions have finished. Result will be
either true or false depending on the values of the async tests.

Example

async.some(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then at least one of the files exists
});

[bookmark: every]

every(arr, iterator, callback)

Alias: all

Returns true if every element in the array satisfies an async test.
The callback for each iterator call only accepts a single argument of true or
false, it does not accept an error argument first! This is in-line with the
way node libraries work with truth tests like fs.exists.

Arguments

	arr - An array to iterate over.

	iterator(item, callback) - A truth test to apply to each item in the array.
The iterator is passed a callback(truthValue) which must be called with a
boolean argument once it has completed.

	callback(result) - A callback which is called after all the iterator
functions have finished. Result will be either true or false depending on
the values of the async tests.

Example

async.every(['file1','file2','file3'], fs.exists, function(result){
 // if result is true then every file exists
});

[bookmark: concat]

concat(arr, iterator, callback)

Applies an iterator to each item in a list, concatenating the results. Returns the
concatenated list. The iterators are called in parallel, and the results are
concatenated as they return. There is no guarantee that the results array will
be returned in the original order of the arguments passed to the iterator function.

Arguments

	arr - An array to iterate over

	iterator(item, callback) - A function to apply to each item in the array.
The iterator is passed a callback(err, results) which must be called once it
has completed with an error (which can be null) and an array of results.

	callback(err, results) - A callback which is called after all the iterator
functions have finished, or an error has occurred. Results is an array containing
the concatenated results of the iterator function.

Example

async.concat(['dir1','dir2','dir3'], fs.readdir, function(err, files){
 // files is now a list of filenames that exist in the 3 directories
});

[bookmark: concatSeries]

concatSeries(arr, iterator, callback)

Same as async.concat, but executes in series instead of parallel.

Control Flow

[bookmark: series]

series(tasks, [callback])

Run an array of functions in series, each one running once the previous
function has completed. If any functions in the series pass an error to its
callback, no more functions are run and the callback for the series is
immediately called with the value of the error. Once the tasks have completed,
the results are passed to the final callback as an array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.series.

Arguments

	tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

	callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.series([
 function(callback){
 // do some stuff ...
 callback(null, 'one');
 },
 function(callback){
 // do some more stuff ...
 callback(null, 'two');
 }
],
// optional callback
function(err, results){
 // results is now equal to ['one', 'two']
});

// an example using an object instead of an array
async.series({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equal to: {one: 1, two: 2}
});

[bookmark: parallel]

parallel(tasks, [callback])

Run an array of functions in parallel, without waiting until the previous
function has completed. If any of the functions pass an error to its
callback, the main callback is immediately called with the value of the error.
Once the tasks have completed, the results are passed to the final callback as an
array.

It is also possible to use an object instead of an array. Each property will be
run as a function and the results will be passed to the final callback as an object
instead of an array. This can be a more readable way of handling results from
async.parallel.

Arguments

	tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

	callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

Example

async.parallel([
 function(callback){
 setTimeout(function(){
 callback(null, 'one');
 }, 200);
 },
 function(callback){
 setTimeout(function(){
 callback(null, 'two');
 }, 100);
 }
],
// optional callback
function(err, results){
 // the results array will equal ['one','two'] even though
 // the second function had a shorter timeout.
});

// an example using an object instead of an array
async.parallel({
 one: function(callback){
 setTimeout(function(){
 callback(null, 1);
 }, 200);
 },
 two: function(callback){
 setTimeout(function(){
 callback(null, 2);
 }, 100);
 }
},
function(err, results) {
 // results is now equals to: {one: 1, two: 2}
});

[bookmark: parallel]

parallelLimit(tasks, limit, [callback])

The same as parallel only the tasks are executed in parallel with a maximum of “limit”
tasks executing at any time.

Note that the tasks are not executed in batches, so there is no guarantee that
the first “limit” tasks will complete before any others are started.

Arguments

	tasks - An array or object containing functions to run, each function is passed
a callback(err, result) it must call on completion with an error (which can
be null) and an optional result value.

	limit - The maximum number of tasks to run at any time.

	callback(err, results) - An optional callback to run once all the functions
have completed. This function gets a results array (or object) containing all
the result arguments passed to the task callbacks.

[bookmark: whilst]

whilst(test, fn, callback)

Repeatedly call fn, while test returns true. Calls the callback when stopped,
or an error occurs.

Arguments

	test() - synchronous truth test to perform before each execution of fn.

	fn(callback) - A function to call each time the test passes. The function is
passed a callback(err) which must be called once it has completed with an
optional error argument.

	callback(err) - A callback which is called after the test fails and repeated
execution of fn has stopped.

Example

var count = 0;

async.whilst(
 function () { return count < 5; },
 function (callback) {
 count++;
 setTimeout(callback, 1000);
 },
 function (err) {
 // 5 seconds have passed
 }
);

[bookmark: doWhilst]

doWhilst(fn, test, callback)

The post check version of whilst. To reflect the difference in the order of operations test and fn arguments are switched. doWhilst is to whilst as do while is to while in plain JavaScript.

[bookmark: until]

until(test, fn, callback)

Repeatedly call fn, until test returns true. Calls the callback when stopped,
or an error occurs.

The inverse of async.whilst.

[bookmark: doUntil]

doUntil(fn, test, callback)

Like doWhilst except the test is inverted. Note the argument ordering differs from until.

[bookmark: forever]

forever(fn, callback)

Calls the asynchronous function ‘fn’ repeatedly, in series, indefinitely.
If an error is passed to fn’s callback then ‘callback’ is called with the
error, otherwise it will never be called.

[bookmark: waterfall]

waterfall(tasks, [callback])

Runs an array of functions in series, each passing their results to the next in
the array. However, if any of the functions pass an error to the callback, the
next function is not executed and the main callback is immediately called with
the error.

Arguments

	tasks - An array of functions to run, each function is passed a
callback(err, result1, result2, ...) it must call on completion. The first
argument is an error (which can be null) and any further arguments will be
passed as arguments in order to the next task.

	callback(err, [results]) - An optional callback to run once all the functions
have completed. This will be passed the results of the last task’s callback.

Example

async.waterfall([
 function(callback){
 callback(null, 'one', 'two');
 },
 function(arg1, arg2, callback){
 callback(null, 'three');
 },
 function(arg1, callback){
 // arg1 now equals 'three'
 callback(null, 'done');
 }
], function (err, result) {
 // result now equals 'done'
});

[bookmark: compose]

compose(fn1, fn2...)

Creates a function which is a composition of the passed asynchronous
functions. Each function consumes the return value of the function that
follows. Composing functions f(), g() and h() would produce the result of
f(g(h())), only this version uses callbacks to obtain the return values.

Each function is executed with the this binding of the composed function.

Arguments

	functions... - the asynchronous functions to compose

Example

function add1(n, callback) {
 setTimeout(function () {
 callback(null, n + 1);
 }, 10);
}

function mul3(n, callback) {
 setTimeout(function () {
 callback(null, n * 3);
 }, 10);
}

var add1mul3 = async.compose(mul3, add1);

add1mul3(4, function (err, result) {
 // result now equals 15
});

[bookmark: applyEach]

applyEach(fns, args..., callback)

Applies the provided arguments to each function in the array, calling the
callback after all functions have completed. If you only provide the first
argument then it will return a function which lets you pass in the
arguments as if it were a single function call.

Arguments

	fns - the asynchronous functions to all call with the same arguments

	args... - any number of separate arguments to pass to the function

	callback - the final argument should be the callback, called when all
functions have completed processing

Example

async.applyEach([enableSearch, updateSchema], 'bucket', callback);

// partial application example:
async.each(
 buckets,
 async.applyEach([enableSearch, updateSchema]),
 callback
);

[bookmark: applyEachSeries]

applyEachSeries(arr, iterator, callback)

The same as applyEach only the functions are applied in series.

[bookmark: queue]

queue(worker, concurrency)

Creates a queue object with the specified concurrency. Tasks added to the
queue will be processed in parallel (up to the concurrency limit). If all
workers are in progress, the task is queued until one is available. Once
a worker has completed a task, the task’s callback is called.

Arguments

	worker(task, callback) - An asynchronous function for processing a queued
task, which must call its callback(err) argument when finished, with an
optional error as an argument.

	concurrency - An integer for determining how many worker functions should be
run in parallel.

Queue objects

The queue object returned by this function has the following properties and
methods:

	length() - a function returning the number of items waiting to be processed.

	concurrency - an integer for determining how many worker functions should be
run in parallel. This property can be changed after a queue is created to
alter the concurrency on-the-fly.

	push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

	unshift(task, [callback]) - add a new task to the front of the queue.

	saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

	empty - a callback that is called when the last item from the queue is given to a worker

	drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a queue object with concurrency 2

var q = async.queue(function (task, callback) {
 console.log('hello ' + task.name);
 callback();
}, 2);

// assign a callback
q.drain = function() {
 console.log('all items have been processed');
}

// add some items to the queue

q.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
q.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

// add some items to the queue (batch-wise)

q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function (err) {
 console.log('finished processing bar');
});

// add some items to the front of the queue

q.unshift({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});

[bookmark: cargo]

cargo(worker, [payload])

Creates a cargo object with the specified payload. Tasks added to the
cargo will be processed altogether (up to the payload limit). If the
worker is in progress, the task is queued until it is available. Once
the worker has completed some tasks, each callback of those tasks is called.

Arguments

	worker(tasks, callback) - An asynchronous function for processing an array of
queued tasks, which must call its callback(err) argument when finished, with
an optional error as an argument.

	payload - An optional integer for determining how many tasks should be
processed per round; if omitted, the default is unlimited.

Cargo objects

The cargo object returned by this function has the following properties and
methods:

	length() - a function returning the number of items waiting to be processed.

	payload - an integer for determining how many tasks should be
process per round. This property can be changed after a cargo is created to
alter the payload on-the-fly.

	push(task, [callback]) - add a new task to the queue, the callback is called
once the worker has finished processing the task.
instead of a single task, an array of tasks can be submitted. the respective callback is used for every task in the list.

	saturated - a callback that is called when the queue length hits the concurrency and further tasks will be queued

	empty - a callback that is called when the last item from the queue is given to a worker

	drain - a callback that is called when the last item from the queue has returned from the worker

Example

// create a cargo object with payload 2

var cargo = async.cargo(function (tasks, callback) {
 for(var i=0; i<tasks.length; i++){
 console.log('hello ' + tasks[i].name);
 }
 callback();
}, 2);

// add some items

cargo.push({name: 'foo'}, function (err) {
 console.log('finished processing foo');
});
cargo.push({name: 'bar'}, function (err) {
 console.log('finished processing bar');
});
cargo.push({name: 'baz'}, function (err) {
 console.log('finished processing baz');
});

[bookmark: auto]

auto(tasks, [callback])

Determines the best order for running functions based on their requirements.
Each function can optionally depend on other functions being completed first,
and each function is run as soon as its requirements are satisfied. If any of
the functions pass an error to their callback, that function will not complete
(so any other functions depending on it will not run) and the main callback
will be called immediately with the error. Functions also receive an object
containing the results of functions which have completed so far.

Note, all functions are called with a results object as a second argument,
so it is unsafe to pass functions in the tasks object which cannot handle the
extra argument. For example, this snippet of code:

async.auto({
 readData: async.apply(fs.readFile, 'data.txt', 'utf-8');
}, callback);

will have the effect of calling readFile with the results object as the last
argument, which will fail:

fs.readFile('data.txt', 'utf-8', cb, {});

Instead, wrap the call to readFile in a function which does not forward the
results object:

async.auto({
 readData: function(cb, results){
 fs.readFile('data.txt', 'utf-8', cb);
 }
}, callback);

Arguments

	tasks - An object literal containing named functions or an array of
requirements, with the function itself the last item in the array. The key
used for each function or array is used when specifying requirements. The
function receives two arguments: (1) a callback(err, result) which must be
called when finished, passing an error (which can be null) and the result of
the function’s execution, and (2) a results object, containing the results of
the previously executed functions.

	callback(err, results) - An optional callback which is called when all the
tasks have been completed. The callback will receive an error as an argument
if any tasks pass an error to their callback. Results will always be passed
but if an error occurred, no other tasks will be performed, and the results
object will only contain partial results.

Example

async.auto({
 get_data: function(callback){
 // async code to get some data
 },
 make_folder: function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 },
 write_file: ['get_data', 'make_folder', function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 callback(null, filename);
 }],
 email_link: ['write_file', function(callback, results){
 // once the file is written let's email a link to it...
 // results.write_file contains the filename returned by write_file.
 }]
});

This is a fairly trivial example, but to do this using the basic parallel and
series functions would look like this:

async.parallel([
 function(callback){
 // async code to get some data
 },
 function(callback){
 // async code to create a directory to store a file in
 // this is run at the same time as getting the data
 }
],
function(err, results){
 async.series([
 function(callback){
 // once there is some data and the directory exists,
 // write the data to a file in the directory
 },
 function(callback){
 // once the file is written let's email a link to it...
 }
]);
});

For a complicated series of async tasks using the auto function makes adding
new tasks much easier and makes the code more readable.

[bookmark: iterator]

iterator(tasks)

Creates an iterator function which calls the next function in the array,
returning a continuation to call the next one after that. It’s also possible to
‘peek’ the next iterator by doing iterator.next().

This function is used internally by the async module but can be useful when
you want to manually control the flow of functions in series.

Arguments

	tasks - An array of functions to run.

Example

var iterator = async.iterator([
 function(){ sys.p('one'); },
 function(){ sys.p('two'); },
 function(){ sys.p('three'); }
]);

node> var iterator2 = iterator();
'one'
node> var iterator3 = iterator2();
'two'
node> iterator3();
'three'
node> var nextfn = iterator2.next();
node> nextfn();
'three'

[bookmark: apply]

apply(function, arguments..)

Creates a continuation function with some arguments already applied, a useful
shorthand when combined with other control flow functions. Any arguments
passed to the returned function are added to the arguments originally passed
to apply.

Arguments

	function - The function you want to eventually apply all arguments to.

	arguments... - Any number of arguments to automatically apply when the
continuation is called.

Example

// using apply

async.parallel([
 async.apply(fs.writeFile, 'testfile1', 'test1'),
 async.apply(fs.writeFile, 'testfile2', 'test2'),
]);

// the same process without using apply

async.parallel([
 function(callback){
 fs.writeFile('testfile1', 'test1', callback);
 },
 function(callback){
 fs.writeFile('testfile2', 'test2', callback);
 }
]);

It’s possible to pass any number of additional arguments when calling the
continuation:

node> var fn = async.apply(sys.puts, 'one');
node> fn('two', 'three');
one
two
three

[bookmark: nextTick]

nextTick(callback)

Calls the callback on a later loop around the event loop. In node.js this just
calls process.nextTick, in the browser it falls back to setImmediate(callback)
if available, otherwise setTimeout(callback, 0), which means other higher priority
events may precede the execution of the callback.

This is used internally for browser-compatibility purposes.

Arguments

	callback - The function to call on a later loop around the event loop.

Example

var call_order = [];
async.nextTick(function(){
 call_order.push('two');
 // call_order now equals ['one','two']
});
call_order.push('one')

[bookmark: times]

times(n, callback)

Calls the callback n times and accumulates results in the same manner
you would use with async.map.

Arguments

	n - The number of times to run the function.

	callback - The function to call n times.

Example

// Pretend this is some complicated async factory
var createUser = function(id, callback) {
 callback(null, {
 id: 'user' + id
 })
}
// generate 5 users
async.times(5, function(n, next){
 createUser(n, function(err, user) {
 next(err, user)
 })
}, function(err, users) {
 // we should now have 5 users
});

[bookmark: timesSeries]

timesSeries(n, callback)

The same as times only the iterator is applied to each item in the array in
series. The next iterator is only called once the current one has completed
processing. The results array will be in the same order as the original.

Utils

[bookmark: memoize]

memoize(fn, [hasher])

Caches the results of an async function. When creating a hash to store function
results against, the callback is omitted from the hash and an optional hash
function can be used.

The cache of results is exposed as the memo property of the function returned
by memoize.

Arguments

	fn - the function you to proxy and cache results from.

	hasher - an optional function for generating a custom hash for storing
results, it has all the arguments applied to it apart from the callback, and
must be synchronous.

Example

var slow_fn = function (name, callback) {
 // do something
 callback(null, result);
};
var fn = async.memoize(slow_fn);

// fn can now be used as if it were slow_fn
fn('some name', function () {
 // callback
});

[bookmark: unmemoize]

unmemoize(fn)

Undoes a memoized function, reverting it to the original, unmemoized
form. Comes handy in tests.

Arguments

	fn - the memoized function

[bookmark: log]

log(function, arguments)

Logs the result of an async function to the console. Only works in node.js or
in browsers that support console.log and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.log is
called on each argument in order.

Arguments

	function - The function you want to eventually apply all arguments to.

	arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, 'hello ' + name);
 }, 1000);
};

node> async.log(hello, 'world');
'hello world'

[bookmark: dir]

dir(function, arguments)

Logs the result of an async function to the console using console.dir to
display the properties of the resulting object. Only works in node.js or
in browsers that support console.dir and console.error (such as FF and Chrome).
If multiple arguments are returned from the async function, console.dir is
called on each argument in order.

Arguments

	function - The function you want to eventually apply all arguments to.

	arguments... - Any number of arguments to apply to the function.

Example

var hello = function(name, callback){
 setTimeout(function(){
 callback(null, {hello: name});
 }, 1000);
};

node> async.dir(hello, 'world');
{hello: 'world'}

[bookmark: noConflict]

noConflict()

Changes the value of async back to its original value, returning a reference to the
async object.

uglify-to-browserify

A transform to make UglifyJS work in browserify.

[image: Build Status] [https://travis-ci.org/ForbesLindesay/uglify-to-browserify]
[image: Dependency Status] [https://gemnasium.com/ForbesLindesay/uglify-to-browserify]
[image: NPM version] [http://badge.fury.io/js/uglify-to-browserify]

Installation

npm install uglify-to-browserify

License

MIT

Source Map

This is a library to generate and consume the source map format
described here [https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit].

This library is written in the Asynchronous Module Definition format, and works
in the following environments:

	Modern Browsers supporting ECMAScript 5 (either after the build, or with an
AMD loader such as RequireJS)

	Inside Firefox (as a JSM file, after the build)

	With NodeJS versions 0.8.X and higher

Node

$ npm install source-map

Building from Source (for everywhere else)

Install Node and then run

$ git clone https://fitzgen@github.com/mozilla/source-map.git
$ cd source-map
$ npm link .

Next, run

$ node Makefile.dryice.js

This should spew a bunch of stuff to stdout, and create the following files:

	dist/source-map.js - The unminified browser version.

	dist/source-map.min.js - The minified browser version.

	dist/SourceMap.jsm - The JavaScript Module for inclusion in Firefox source.

Examples

Consuming a source map

var rawSourceMap = {
 version: 3,
 file: 'min.js',
 names: ['bar', 'baz', 'n'],
 sources: ['one.js', 'two.js'],
 sourceRoot: 'http://example.com/www/js/',
 mappings: 'CAAC,IAAI,IAAM,SAAUA,GAClB,OAAOC,IAAID;CCDb,IAAI,IAAM,SAAUE,GAClB,OAAOA'
};

var smc = new SourceMapConsumer(rawSourceMap);

console.log(smc.sources);
// ['http://example.com/www/js/one.js',
// 'http://example.com/www/js/two.js']

console.log(smc.originalPositionFor({
 line: 2,
 column: 28
}));
// { source: 'http://example.com/www/js/two.js',
// line: 2,
// column: 10,
// name: 'n' }

console.log(smc.generatedPositionFor({
 source: 'http://example.com/www/js/two.js',
 line: 2,
 column: 10
}));
// { line: 2, column: 28 }

smc.eachMapping(function (m) {
 // ...
});

Generating a source map

In depth guide:
Compiling to JavaScript, and Debugging with Source Maps [https://hacks.mozilla.org/2013/05/compiling-to-javascript-and-debugging-with-source-maps/]

With SourceNode (high level API)

function compile(ast) {
 switch (ast.type) {
 case 'BinaryExpression':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 [compile(ast.left), " + ", compile(ast.right)]
);
 case 'Literal':
 return new SourceNode(
 ast.location.line,
 ast.location.column,
 ast.location.source,
 String(ast.value)
);
 // ...
 default:
 throw new Error("Bad AST");
 }
}

var ast = parse("40 + 2", "add.js");
console.log(compile(ast).toStringWithSourceMap({
 file: 'add.js'
}));
// { code: '40 + 2',
// map: [object SourceMapGenerator] }

With SourceMapGenerator (low level API)

var map = new SourceMapGenerator({
 file: "source-mapped.js"
});

map.addMapping({
 generated: {
 line: 10,
 column: 35
 },
 source: "foo.js",
 original: {
 line: 33,
 column: 2
 },
 name: "christopher"
});

console.log(map.toString());
// '{"version":3,"file":"source-mapped.js","sources":["foo.js"],"names":["christopher"],"mappings":";;;;;;;;;mCAgCEA"}'

API

Get a reference to the module:

// NodeJS
var sourceMap = require('source-map');

// Browser builds
var sourceMap = window.sourceMap;

// Inside Firefox
let sourceMap = {};
Components.utils.import('resource:///modules/devtools/SourceMap.jsm', sourceMap);

SourceMapConsumer

A SourceMapConsumer instance represents a parsed source map which we can query
for information about the original file positions by giving it a file position
in the generated source.

new SourceMapConsumer(rawSourceMap)

The only parameter is the raw source map (either as a string which can be
JSON.parse‘d, or an object). According to the spec, source maps have the
following attributes:

	version: Which version of the source map spec this map is following.

	sources: An array of URLs to the original source files.

	names: An array of identifiers which can be referrenced by individual
mappings.

	sourceRoot: Optional. The URL root from which all sources are relative.

	sourcesContent: Optional. An array of contents of the original source files.

	mappings: A string of base64 VLQs which contain the actual mappings.

	file: The generated filename this source map is associated with.

SourceMapConsumer.prototype.originalPositionFor(generatedPosition)

Returns the original source, line, and column information for the generated
source’s line and column positions provided. The only argument is an object with
the following properties:

	line: The line number in the generated source.

	column: The column number in the generated source.

and an object is returned with the following properties:

	source: The original source file, or null if this information is not
available.

	line: The line number in the original source, or null if this information is
not available.

	column: The column number in the original source, or null or null if this
information is not available.

	name: The original identifier, or null if this information is not available.

SourceMapConsumer.prototype.generatedPositionFor(originalPosition)

Returns the generated line and column information for the original source,
line, and column positions provided. The only argument is an object with
the following properties:

	source: The filename of the original source.

	line: The line number in the original source.

	column: The column number in the original source.

and an object is returned with the following properties:

	line: The line number in the generated source, or null.

	column: The column number in the generated source, or null.

SourceMapConsumer.prototype.sourceContentFor(source)

Returns the original source content for the source provided. The only
argument is the URL of the original source file.

SourceMapConsumer.prototype.eachMapping(callback, context, order)

Iterate over each mapping between an original source/line/column and a
generated line/column in this source map.

	callback: The function that is called with each mapping. Mappings have the
form { source, generatedLine, generatedColumn, originalLine, originalColumn, name }

	context: Optional. If specified, this object will be the value of this
every time that callback is called.

	order: Either SourceMapConsumer.GENERATED_ORDER or
SourceMapConsumer.ORIGINAL_ORDER. Specifies whether you want to iterate over
the mappings sorted by the generated file’s line/column order or the
original’s source/line/column order, respectively. Defaults to
SourceMapConsumer.GENERATED_ORDER.

SourceMapGenerator

An instance of the SourceMapGenerator represents a source map which is being
built incrementally.

new SourceMapGenerator(startOfSourceMap)

To create a new one, you must pass an object with the following properties:

	file: The filename of the generated source that this source map is
associated with.

	sourceRoot: An optional root for all relative URLs in this source map.

SourceMapGenerator.fromSourceMap(sourceMapConsumer)

Creates a new SourceMapGenerator based on a SourceMapConsumer

	sourceMapConsumer The SourceMap.

SourceMapGenerator.prototype.addMapping(mapping)

Add a single mapping from original source line and column to the generated
source’s line and column for this source map being created. The mapping object
should have the following properties:

	generated: An object with the generated line and column positions.

	original: An object with the original line and column positions.

	source: The original source file (relative to the sourceRoot).

	name: An optional original token name for this mapping.

SourceMapGenerator.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for an original source file.

	sourceFile the URL of the original source file.

	sourceContent the content of the source file.

SourceMapGenerator.prototype.applySourceMap(sourceMapConsumer[, sourceFile])

Applies a SourceMap for a source file to the SourceMap.
Each mapping to the supplied source file is rewritten using the
supplied SourceMap. Note: The resolution for the resulting mappings
is the minimium of this map and the supplied map.

	sourceMapConsumer: The SourceMap to be applied.

	sourceFile: Optional. The filename of the source file.
If omitted, sourceMapConsumer.file will be used.

SourceMapGenerator.prototype.toString()

Renders the source map being generated to a string.

SourceNode

SourceNodes provide a way to abstract over interpolating and/or concatenating
snippets of generated JavaScript source code, while maintaining the line and
column information associated between those snippets and the original source
code. This is useful as the final intermediate representation a compiler might
use before outputting the generated JS and source map.

new SourceNode(line, column, source[, chunk[, name]])

	line: The original line number associated with this source node, or null if
it isn’t associated with an original line.

	column: The original column number associated with this source node, or null
if it isn’t associated with an original column.

	source: The original source’s filename.

	chunk: Optional. Is immediately passed to SourceNode.prototype.add, see
below.

	name: Optional. The original identifier.

SourceNode.fromStringWithSourceMap(code, sourceMapConsumer)

Creates a SourceNode from generated code and a SourceMapConsumer.

	code: The generated code

	sourceMapConsumer The SourceMap for the generated code

SourceNode.prototype.add(chunk)

Add a chunk of generated JS to this source node.

	chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.prepend(chunk)

Prepend a chunk of generated JS to this source node.

	chunk: A string snippet of generated JS code, another instance of
SourceNode, or an array where each member is one of those things.

SourceNode.prototype.setSourceContent(sourceFile, sourceContent)

Set the source content for a source file. This will be added to the
SourceMap in the sourcesContent field.

	sourceFile: The filename of the source file

	sourceContent: The content of the source file

SourceNode.prototype.walk(fn)

Walk over the tree of JS snippets in this node and its children. The walking
function is called once for each snippet of JS and is passed that snippet and
the its original associated source’s line/column location.

	fn: The traversal function.

SourceNode.prototype.walkSourceContents(fn)

Walk over the tree of SourceNodes. The walking function is called for each
source file content and is passed the filename and source content.

	fn: The traversal function.

SourceNode.prototype.join(sep)

Like Array.prototype.join except for SourceNodes. Inserts the separator
between each of this source node’s children.

	sep: The separator.

SourceNode.prototype.replaceRight(pattern, replacement)

Call String.prototype.replace on the very right-most source snippet. Useful
for trimming whitespace from the end of a source node, etc.

	pattern: The pattern to replace.

	replacement: The thing to replace the pattern with.

SourceNode.prototype.toString()

Return the string representation of this source node. Walks over the tree and
concatenates all the various snippets together to one string.

SourceNode.prototype.toStringWithSourceMap(startOfSourceMap)

Returns the string representation of this tree of source nodes, plus a
SourceMapGenerator which contains all the mappings between the generated and
original sources.

The arguments are the same as those to new SourceMapGenerator.

Tests

[image: Build Status] [https://travis-ci.org/mozilla/source-map]

Install NodeJS version 0.8.0 or greater, then run node test/run-tests.js.

To add new tests, create a new file named test/test-<your new test name>.js
and export your test functions with names that start with “test”, for example

exports["test doing the foo bar"] = function (assert, util) {
 ...
};

The new test will be located automatically when you run the suite.

The util argument is the test utility module located at test/source-map/util.

The assert argument is a cut down version of node’s assert module. You have
access to the following assertion functions:

	doesNotThrow

	equal

	ok

	strictEqual

	throws

(The reason for the restricted set of test functions is because we need the
tests to run inside Firefox’s test suite as well and so the assert module is
shimmed in that environment. See build/assert-shim.js.)

Change Log

0.1.31

	Delay parsing the mappings in SourceMapConsumer until queried for a source
location.

	Support Sass source maps (which at the time of writing deviate from the spec
in small ways) in SourceMapConsumer.

0.1.30

	Do not join source root with a source, when the source is a data URI.

	Extend the test runner to allow running single specific test files at a time.

	Performance improvements in SourceNode.prototype.walk and
SourceMapConsumer.prototype.eachMapping.

	Source map browser builds will now work inside Workers.

	Better error messages when attempting to add an invalid mapping to a
SourceMapGenerator.

0.1.29

	Allow duplicate entries in the names and sources arrays of source maps
(usually from TypeScript) we are parsing. Fixes github isse 72.

0.1.28

	Skip duplicate mappings when creating source maps from SourceNode; github
issue 75.

0.1.27

	Don’t throw an error when the file property is missing in SourceMapConsumer,
we don’t use it anyway.

0.1.26

	Fix SourceNode.fromStringWithSourceMap for empty maps. Fixes github issue 70.

0.1.25

	Make compatible with browserify

0.1.24

	Fix issue with absolute paths and file:// URIs. See
https://bugzilla.mozilla.org/show_bug.cgi?id=885597

0.1.23

	Fix issue with absolute paths and sourcesContent, github issue 64.

0.1.22

	Ignore duplicate mappings in SourceMapGenerator. Fixes github issue 21.

0.1.21

	Fixed handling of sources that start with a slash so that they are relative to
the source root’s host.

0.1.20

	Fixed github issue #43: absolute URLs aren’t joined with the source root
anymore.

0.1.19

	Using Travis CI to run tests.

0.1.18

	Fixed a bug in the handling of sourceRoot.

0.1.17

	Added SourceNode.fromStringWithSourceMap.

0.1.16

	Added missing documentation.

	Fixed the generating of empty mappings in SourceNode.

0.1.15

	Added SourceMapGenerator.applySourceMap.

0.1.14

	The sourceRoot is now handled consistently.

0.1.13

	Added SourceMapGenerator.fromSourceMap.

0.1.12

	SourceNode now generates empty mappings too.

0.1.11

	Added name support to SourceNode.

0.1.10

	Added sourcesContent support to the customer and generator.

amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.

Usage

1) Update your package.json to indicate amdefine as a dependency:

 "dependencies": {
 "amdefine": ">=0.1.0"
 }

Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }

Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]

amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.

Why distribute AMD-style nodes via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.

amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');

The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.

How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.

define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
 var dependency = require('dependency');
});

or

define(['dependency'], function (dependency) {

});

RequireJS optimizer integration. [bookmark: optimizer]

 Welcome to Sqwish

Welcome to Sqwish

A Node [http://nodejs.org] based CSS Compressor. It works like this.

require('sqwish').minify('body { color: #ff33cc; }');
// => "body{color:#f3c}"

CLI

Install it.

$ npm install -g sqwish

Use it like this:

$ sqwish app.css # default output is <file>.min.css therefore app.css => app.min.css
$ # or...
$ sqwish css/styles.css -o prod/something-else.min.css

Notes

Sqwish does not attempt to fix invalid CSS, therefore, at minimum, your CSS should at least follow the basic rules:

selectors[,more selectors] {
 property: value;
 another-property: another value;
}

Strict Optimizations

Aside from regular minification, in –strict mode Sqwish will combine duplicate selectors and merge duplicate properties.

/* before */
div {
 color: orange;
 background: red;
}
div {
 color: #ff33cc;
 margin: 1px 0px 1px 0px;
}

/* after */
div{color:#f3c;background:red;margin:1px 0}

This mode can be enabled as so:

sqwish.minify(css, true);

on the command line

$ sqwish styles.css --strict

Developers

Be sure you have the proper testing harness set up ahead of time by installing the sink-test submodule

$ npm install --dev

Tests can be added in tests/tests.js, and then run as such:

$ npm test

License

Sqwish is copyright Dustin Diaz 2011 under MIT License

Happy Sqwishing!

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plu